

Reduced Gun Barrel Erosion with Advanced Gun Propellants

Ronald L. Simmons Naval Surface Warfare Center Indian Head, MD 20640

39thGun & Ammunition Symposium San Diego, CA 9-12 April 2001

Gun Barrel Erosion

- Highly complicated process where interactions occur
 - Short time
 - High velocity
 - High pressure
- Mechanical
- Thermal
- Chemical ⇐
 - Topic of this presentation

Gun Barrel Erosion

- Thermal effects ... Direct function of Tv
 - Adiabatic isochoric flame temperature
- Single base ... Generally low erosion
- Double-base ... Generally erosive
- Triple-base ... Generally low erosion
- Nitramine (RDX-HMX) propellants
 - Traditionally thought to be erosive
 - Regardless of Tv
 - Conflicting data

Advanced Gun Propellants

- Higher energy propellants being developed
- Utilize "new" ingredients
- C-H-O-N stoichiometry differ from current
- Combustion products differ
- Erosion of gun barrels may differ
- 1995 Gun & Ammo paper ... Phoenix Mtg
- 1996 Erosion paper by Arpad Juhasz ARL

Advanced + Future Gun Propellants Focus on Higher Velocity

- Impetus > 1300 Joules/gram
- Flame temperature < 3500°K
 - Preferably < 2500°-2700°K
- Loading density > 1.10 g/cc
 - Preferably > 1.2 g/cc ... I ncreased energy-density
- Tailored burning rate
 - Increased progressivity
- All of the above require "new" ingredients
 - Not in service now

Typical Gun Propellants

- Single-base
 - Vieille
- Double-base
 - JA-2
- Triple-base
 - M30 47% NQ
- Advanced ... Currently under development
- Future ... 10-20 yrs

Advanced Gun Propellants World-wide Research

• RDX-TPE US - Germany - France

• RDX-NC-CAB US - Germany - Sweden

RDX-GAP Germany - France - Japan

RDX-CAN Japan

RDX-HTPB France

• CL-20 - TPE US - Germany

CL-20 - NC-CAB Germany

- Other compounds US-Germany-Sweden-Japan
 - High nitrogen compounds

New Ingredients Beyond SB - DB - TB

- Well-known
 - RDX
 - HMX
- Others ... High nitrogen
 - CL-20
 - FOX-7 and FOX-12
 - TAGZT and HzTz
 - Furazans
 - Tetrazoles
 - Triaminoguanidine salts

Comparison of Propellants

	<u>DB</u>	<u>Advanced</u>
Impetus - J/g	1157	1175
Flame temp - °K	3458	2808
Moles gas/kg	40.3	50.3
Oxygen balance	-31	-55

C-H-O-N Stoichiometry

	<u>DB</u>	<u>Advanced</u>
С	1.00	1.00
Н	1.46	1.89
Ο	1.79	1.15
N	0.50	1.41

Combustion Products Moles gas/kg

	<u>DB</u>	<u>Advanced</u>
∞	15.0	18.4
002	5.2	0.5
H2	3.8	14.9
H2O	10.9	28
N2	5.1	13.3

Gas Composition Mole fraction

	<u>DB</u>	<u>Advanced</u>
∞	0.38	0.37
CC2	0.12	0.01
H2	0.10	0.29
H2O	0.27	0.06
N2	0.13	0.27

Future Gun Propellants Next 10-20 Years

- New high-nitrogen compounds
 - Increased H and N
 - Decreased C and O
- More energy (impetus) ... > 1400 Joules/g
- Higher density charges
- Tailored burning rate
 - Faster burning
 - Slower burning

Future Gun Propellant Speculation

- Stoichiometry
- C 1.00
- H 2.51
- O 1.00
- N 2.48

- Combustion products
 - mole fraction
- CO 0.27
- CO2 0.00
- H2 0.33
- H2O 0.02
- N2 0.35
- H2 + N2 ... dominant
- CO2 + H2O ... nil

Erosion Testing

- Typically done in closed bomb
- Blow-out rupture disk + orifice (nozzle)
- Nozzle weighed before and after firing
- Weight loss correlated with propellant properties
- Traditionally, high Tv ⇒ high erosion
- Gas composition involved also
 - Japan
 - Germany
 - Switzerland
 - US ARL Benet

Erosion Testing

- Japan ... Kimura's research
 - High energy LOVA propellants for tank cannon
- Major parameters affecting erosion
 - Increased H2 ... probably good
 - Increased N2 ... best
 - Reduced CO ... definitely better
 - Reduced CO2 ... definitely better
 - Reduced H2O ... definitely better
- Overall ... Expect improvements
 - Less erosion

Advanced Gun Propellants Summary

- Will contain "new" energetic compounds
- C-H-O-N stoichiometry <u>will</u> be different
 - Increased H and N
 - Reduced C and O
- Combustion products <u>will</u> be different
 - Increased H2 + N2
 - Reduced CO2 + H2O
- Gun barrel erosion <u>may</u> be different
- Evidence says erosion may be better
 - At comparable Tv

Acknowledgements

- Joe Flanagan Consultant
- Arpad Juhasz Retired ARL
- Charlie Leveritt ARL
- AI Stern NSWC/IH
- Tom Brill University of Delaware
- Woody Waesche SAIC
- Helena Bergmann FOA/Sweden
- Dietmar Mueller I CT/Germany
- Rudi Heiser Weil-am-Rhein/Germany
- Serge De Boni NitroChemie/Switzerland
- Beat Vogelsanger NitroChemie/Switzerland